

Approved for public release; further dissemination unlimited

Preprint
UCRL-CONF-204866

Performance-Oriented
Privacy Preserving Data
Integration

R. Pon, T. Critchlow

2nd International conference on Data Integration in the Life Sciences

July, 2005

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

Performance-Oriented Privacy-Preserving Data Integration

Raymond K. Pon1, Terence Critchlow2

1 UCLA Computer Science Department,
Los Angeles, California, USA
pon@seas.ucla.edu

2 Lawrence Livermore National Laboratory
Livermore, California, USA
critchlow@llnl.gov

Abstract. Current solutions to integrating private data with public data have provided useful privacy metrics, such as
relative information gain, that can be used to evaluate alternative approaches. Unfortunately, they have not addressed
critical performance issues, especially when the public database is very large. The use of hashes and noise yields better
performance than existing techniques, while still making it difficult for unauthorized entities to distinguish which data items
truly exist in the private database. As we show here, the uncertainty introduced by collisions caused by hashing and the
injection of noise can be leveraged to perform a privacy-preserving relational join operation between a massive public table
and a relatively smaller private one.

1 Introduction

Data is often generated or collected by multiple parties, and the need to integrate the resulting disparate data sources has
been identified by the research community [1-6]. Although heterogeneity of the schemas is being addressed, most data
integration approaches have not yet efficiently addressed privacy concerns.
Legal and social circumstances have made data privacy a significant issue [7-8], resulting in
the need for Hippocratic databases (i.e., database that include privacy as a central concern) [9],
particularly in sharing scientific or medical data. Without strong privacy guarantees, scientists
often refuse to share data with others for reasons such as subject/patient confidentiality,
proprietary/sensitive data restrictions, competition, and potential conflict and disagreement
[10]. An application where both data sharing and privacy are important is biomedical
research. In this domain research facilities frequently collaborate with each other, sharing
experimental data and results. In particular, comparing genome sequences from different
species has become an important tool for identifying functions of genes [11]. However, this
necessitates integrating different databases. Unfortunately, while there is a significant amount
of publicly available data, information provided by most companies, such as proprietary
genome sequences, must be kept private.
More concretely, imagine that a scientist wishes to perform a query across a table in his
private database (e.g., proprietary genome sequences) and a table in a public data warehouse
(e.g., GenBank [12]) in the most efficient manner possible (shown in Figure 1). Ignoring
privacy restrictions, the problem is reduced to a distributed database problem that can be
solved by shipping the scientist’s table to the warehouse and performing the join at the
warehouse. However, if the scientist’s data set is proprietary, it cannot be sent verbatim to the
warehouse. The naive solution is for the scientist to download the entire public table to his
local machine and perform the query there. But to do so would be prohibitively expensive if
the public table is very large or the communications link is limited. It would be impossible if

the publicly available data cannot be duplicated, for example because of intellectual property
constraints.
Assuming that all data sources are abstracted as relational tables and schema reconciliation
has already been done, the problem can be formalized as the following: table),(BAR = from a
small private database db is to be joined with table),(CBS = from a large data warehouse dw
on column B, yielding the desired table Goal = R? BS. Table R is private and the identity of the
data items in R can not be known by any party other than the owner of db. Table S is publicly
available and accessible. It is assumed that the system operates in a semi-honest model, where
both parties will behave according to their prescribed role in any given protocol. However,
there are no restrictions on the use of information that has been learned during the data
exchange after the protocol is completed. Thus, from the privacy perspective, dw is treated as
an adversary.
Our solution to this problem augments the well-known semi-join framework [13], “hiding”
the actual values of the join column of table R by hashing them and including additional
artificial values. The resulting collection is sent to the data warehouse to retrieve a subset of
table S that includes the data required to answer the original query along with some false
positives. Although, this method will not provide for absolute privacy (i.e., the adversary can
infer something about the contents of table R), the hash/noise method can guarantee an upper
bound on the amount of privacy loss when data is exchanged. By sacrificing a small amount of
privacy, this method significantly reduces transmission costs compared to techniques that
provide absolute privacy.

1.1 Challenges and Related Work

There are several challenges in privacy-preserving data integration, including: defining
privacy; correctness; and efficiency. This section provides a short summary of the most
relevant work being done by others to meet these challenges, as well as related work on
general approaches to privacy preservation. Following this overview, Section 2 describes our
privacy metric; Section 3 presents our hash/noise approach; Section 4 outlines a proof of
concept implementation and initial experimental results, and; Section 5 summarizes our work
and explores future roads of research.
First, a metric is needed to measure the amount of privacy loss that is incurred when data is
exposed. In [14], variable privacy is proposed as a method in which some information can be
revealed for some benefit. Privacy loss is likened to a communications channel, in which the

difference
between a priori
(i.e., before data
has been
revealed) and a
posteriori (i.e.,
after data has
been revealed)

distributions of information measures privacy loss. In [15], the likelihood of what can be
inferred about a query posed by the user is used as a measure of privacy loss. In [16] and [17],

Fig. 1. General problem

a metric for measuring the inherent uncertainty of a random variable based on its differential
entropy is used as a measure for privacy. These proposed metrics are related to relative
information gain, which has also been used in many privacy-preserving applications [18],
making it a likely candidate for measuring privacy loss.
The second challenge is producing exact and correct answers to queries posed by users. Work
in privacy-preserving data mining [19-22] has focused on changing the actual values of data
items so that the values of data items are hidden but the distribution of the perturbed data is
similar to that of the original data distribution. However, the exact original data values can not
be accurately recovered. While this is acceptable in data mining applications, the exact
answers are required for data integration.
The third challenge is to perform the private join operation efficiently. It has been shown that
to completely guarantee the privacy of the queries, the entire contents of table S should be
downloaded [23]. However, in some cases this is not practical and an alternative solution is
needed. If the user is willing to sacrifice a small portion of his data privacy, the join operation
can be done without retrieving all of table S.
Commutative encryption-based approaches have been proposed to solve the private data
integration problem [24-26]. These approaches take advantage of a family of encryption
functions in which the order that data item are encrypted by two different keys does not
matter. These techniques require the exchange of both parties’ encrypted data so that they can
both mutually encrypt each others’ data, making them very expensive. Similarly, oblivious
transfer [27-29] allows the user to secretly pose a query and only receive the result of the
query and nothing else, but the encryption and transmission of all data items held by dw to
the user is required.
There has also been work in private information retrieval schemes [23, 30], which allow a user
to retrieve information from a database while maintaining the privacy of his query. In these
schemes, table S would be replicated at multiple sites. Given a query, multiple queries are
generated and sent to each of site such that no site can learn the actual original query by acting
alone. However, users working with sensitive data would be unwilling to trust such a system
if no guarantee of enforcement of non-collusion among the sites.
Our hash/noise method takes an approach similar that to the one discussed in [15], which
takes advantage of collisions caused by hashes to introduce uncertainty in the true contents of
a private database’s table. A hash value is generated for each data item in both tables each
time a query is posed. The size of the hash is varied to control the amount of privacy loss, so
traditional indexing mechanisms cannot be used to accelerate querying time. A sequential
scan of both tables involved in the join is necessary to compute the hash values of all data
items in both tables. As a result, the join operation becomes a very expensive operation. There
has been work in using Bloom filters to make joins in a distributed database system more
efficient and private [31-33]. Similar to the hashing approach, however, Bloom filters would
require a sequential scan of both tables to apply a Bloom filter to each of the data items and
would not allow the use of traditional indexing mechanism to speed up querying.

 In contrast, to these two approaches, our hash/noise method approach uses a set of fixed hashing and artificial hash
values (i.e., noise) to control the amount of uncertainty in the identity of the join column values, thereby controlling the level
of privacy loss incurred. Because the hashes are known in advance, we can store and index the resulting hash values in the
database and would not need to recompute them for each query, enabling indexes to be used to speed up querying. Because

the hash functions are known in advance, a dictionary-attack is possible but is partially alleviated by using artificial hash
values.
Furthermore, privacy control by hash truncation alone as suggested by [15] is very coarse. For
example, suppose that a 16-bit hash does not satisfy a given privacy constraint, so a 15-bit
hash was selected instead. However, the 15-bit hash doubles the collision rate of the 16-bit
hash, doubling the size of the candidate set for the join result. In contrast, the same 16-bit hash
with additional artificial hash values could have satisfied the same privacy constraint and
yield fewer records in the candidate set.

2 Privacy Metric

For our work, we use relative information gain [34] as a basis for a metric to measure privacy loss when data is exchanged.
Relative information gain is closely related to entropy, which is the amount of uncertainty in a random variable X. If the
random variable X can take on a set of finite values x1,x2,…xn, then its entropy is defined as:

∑ =
==−=

n

i ii xXPxXPXH
1 2)(log)()((1)

The conditional entropy H(X|Y) is the amount of uncertainty in X after Y has been observed.
Relative information gain, or the fraction of information revealed by Y about X, is defined as:

)(
)|()(

);(
XH

YXHXH
YXRIG

−
= (2)

Privacy loss can be thought as the amount of information gained by an adversary about the contents of set of sensitive data
items, which in this case are the contents of column B of table R. If dw (i.e., the adversary) has no knowledge about the
distribution of column B of table R, then it can only assume that each value that belongs to the domain of B (i.e., U) are equally
likely to occur. Let R~ be a random variable describing the column B values (the only information revealed in a semi-join by
db), of a tuple in table R. Absolute privacy loss pabs is defined as the relative information gain on R~ when any data set N is
revealed to dw by db. By doing a simple substitution with equation 2, absolute privacy loss is:

||log
)|~(||log

)~(
)|

~
()

~
(

2

2

U
NRHU

RH
NRHRHpabs

−
=−= (3)

It is possible that an adversary will make use of any available information to infer the contents
of table R, in particular the contents of table S, since it is publicly available. Thus, relative
privacy loss is defined as:

)|~(
)|

~
()|

~
(

SRH
NRHSRHp rel

−= (4)

In this case, the adversary uses the distribution of values in column B of table S as a hint to the possible distribution of values
in column B of table R.)|~(SRH (the uncertainty of the join column values of a tuple in table R given the contents of table S)

can be found by directly applying equation 2 on the distribution of values in column B of table S. Because this metric
captures the information gained by an adversary with respect to its current knowledge in contrast to absolute privacy loss, it
is the metric we have chosen for evaluation of our approach.

3 Privacy-Preserving Distributed Join

Figure 2 outlines our approach to finding R?BS when a privacy constraint exists. The first step projects column B from table R
and applies a hashing function h to each value in column B, yielding table h(R) with column h(B) . Step 2 generates artificial
hash values, yielding table n. In step 3, table N is derived from the union of n and h(R) . Table N is then shipped to the data
warehouse in step 4. At the data warehouse in step 5, table S and N are joined on column h(B) , yielding table F. Table F is a
set of tuples from dw that contain the final result of the join operation and which is shipped to db in step 6. The final result,
Goal, is found by filtering out the false positives in F by joining tables R and F.

3.1 Privacy Constraint Satisfaction

Different hash functions yield different collision rates. Hash functions with large ranges tend to yield low collision rates;
whereas, hash functions with smaller ranges tend to yield high collision rates. A hash function h with a high collision rate
introduces large amounts of uncertainty about x when h(x) is known. This uncertainty is used to mask the true identity of a
join column value in table R. Hash functions also hide clusters of data by hashing clustered values to uniformly-distributed
hashed values. A hash function with a high collision rate has the side effect of “compressing” the values of column B from
table R since a single hash value can be used to represent multiple actual values. However, if the collision rate is too high,
many false positives will occur in F due to the high number of collisions, yielding unnecessary transmission costs. Thus, it is
important to use a hashing function that provides an acceptable level of performance while providing enough uncertainty to
meet the privacy constraint.
It is computationally expensive to dynamically compute the hash values resulting from a new
hash function with a different size each time a query is posed on a large data warehouse table.
Furthermore, dynamic generation of values prevents indexing mechanism from being used to
during the join operation in step 5. Our approach is to predefine a set of m hash functions
h1,h2,…,hm of different sizes. The result of each of these hash functions to column B on table S
are stored explicitly (in m different columns) and indexed.
When the user performs a join on his private table R and the public table S, the privacy loss
incurred with respect to the contents of table S is constrained to not exceed prel. In other words:

)|~(
)|

~
()|

~
(

SRH
NRHSRHp rel

−≥ (5)

Assuming a uniformly-distributing hash
function, the number of real values that
hash to the same hash value is estimated

to be
||
||

H
U , where |U| is the size of the

domain of possible values for column B
(the universe) and |H| is the range size
of hash function h. H is the set of possible
values in the range of h. For any given

hash value,
||
||

H
U possible values could

have been used as input into the hash
function and could have belonged to
table R. For a set of |N| hash values,

there is a total of
||
||

||
H
U

N possible values

that data items in column B of table R
can take on with equal probability. Thus,)|~(NRH is estimated as:

Fig. 2. Privacy-preserving distributed join







=

||
||

||log)|
~

(2 H
U

NNRH (6)

By combining equations 5 and 6, the constraint on |N| for a given prel is found to be:

)
~

|
~

()1(2
||
||

|| SRHprel

U
H

N −≥ (7)

Applying equation 7 to each hash function, the minimum number of hash values
|r1|,|r2|,…,|rm| for all m available hash functions on dw can be found.
We can estimate the number of unique hash values generated by hashing each tuple in R with
hi analogously to [15] as:

||
||

111|)(|
||

i

R

i
esti H

H
Rh 



















−−= (8)

Then the actual size of the hash value set Ni that db would send to dw, if hash function hi is
selected, is:

)|)(|,max(|| estiii RhrN = (9)

Note that |Ni| = |hi (R)|, so it may be necessary to add artificial hash values to the set N sent
by db to dw in addition to hi(R). This can be done by randomly selecting |Ni| - |hi(R)| hash
values that belong to the range of hi. The set of artificial hash values is denoted as ni, where

iii nRhN ∪=)(.

3.2 Cost Estimation

To select the appropriate hash function for the data exchange, the transmission cost normalized with respect to the brute-force
method (i.e., downloading table S from dw to db) costi can be estimated. It is assumed that transmissions costs will dominate
the execution costs of the overall join operation since the system will be operating over a limited communications link and
search time is kept low with the use of indices.
If the brute-force method was used, ct|S| time units are required to transmit |S| records from
dw to db where ct is the cost associated with transmitting a single record returned by dw in
bytes. The cost of the hash/noise method can be estimated to be the sum of the cost of
transmitting hash values from db to dw and the cost of transmitting the set of candidate tuples
F returned by dw to db. The cost of sending the hash values is ch|Ni| time units for a hash
function hi, where ch is the cost associated with transmitting a single hash value. The cost of the
tuples returned by dw to db after the hash values have been sent is ct|F|. Thus, the
transmission cost normalized with respect to the brute-force method is summarized as:

| | | | | || |
| | | | | |

h i t h i
i

t t

c N c F c NF
cost

c S S c S
+

= = + (10)

Equation 10 shows that as the cost-ratio ch/ct approaches zero, the cost of sending hash values

||
||

Sc
Nc

t

ih becomes small. In other words, as the size of the tuples returned increases the cost of

sending the hash becomes insignificant. As |F| approaches |S|, the performance of the
hash/noise method is similar to that of the brute-force method; whereas, when |F| << |S|,

we see significant performance improvement over the brute method. While |F| is not known
until the query has been executed, it can be estimated to be the average number of tuples
returned by dw given the characteristics of the hash function and the contents of dw. It is found
that on average for a given hash value, the number of values in column B that will collide to

the some hash value is
||
||

iH
S for a hash

function hi. Consequently, the average number

of tuples returned by dw to db is ||
||

||
i

i
N

H
S .

Thus the normalized transmission cost costi for
a hash function hi is estimated to be:

||

||
||

||||

Sc

N
H
ScNc

cost
t

i
i

tih

i

+
=

(11)

The hash function hi, with the appropriate Ni found with equation 9 that yields the lowest normalized transmission cost
according to equation 11 is selected as the hash function for the data exchange. Clearly, if costi = 1, it would be more
advantageous to download S since the cost of doing so is either less than or equal to the cost of our hash-noise approach
without any loss of privacy.

4. Implementation and Results

A prototype of this system was implemented in Java using MySQL [35]. Borrowing a technique from [15], eight hash functions
were created by simply truncating the result of the MD5 hash [36]. Eight sets of hash values were generated for each B column
value by truncating the result of the MD5 hash of a column B value to various bit sizes ranging from 8 to 16 bits. The hash
value sets were stored and indexed in dw along with their respective S table.)|~(SRH was computed offline and stored for

each S table.
Three sets of data were used for three instances of table S. The first two were each comprised
of 2.5 million synthetically generated tuples. The values of column B for table S were
generated with a uniform distribution of values from 0 to 99,999 for the first set. The second
set’s column B values were generated with a Gaussian distribution of values from 0 to 99,999
with a mean of 50,000 and a standard deviation of 1000. The third set of data was the
“alignment block in rat chain of chromosome 10” table, taken from the UCSC Genome Browser
Project [37]. The genome data set contains approximately 2.4 million records and was biased
towards low join column values.
The size of the domain U for the uniformly and Gaussian-distributed join column values was
100,000. There were approximately 123,598 different values for the join column in the genome
data set, so the size of domain U for join column values was approximated to be 217. Unless

Fig. 3. Execution times for variable |R|/|U|. Target prel
= 0.01 and ch/ct = ½

otherwise specified, the cost-ratio ch/ct was ½ (i.e., the cost of transmitting of a hash value is
half the cost of transmitting a record from table S).
For each experiment, the R tables were generated randomly. The R tables to be joined with a
uniformly or a Gaussian-distributed table S were generated by randomly selecting a value for
column B from the range of 0 to 99,999. The R tables to be joined with the genome data were
generated by randomly selecting tuples from the “summary information about chain of rat”
table (also available from [37]). For each data point plotted, five R tables were randomly
generated, each of which was joined with table S
using the hash/noise method fives times. The
maximum and minimum observed values of each
studied parameter were ignored, and the rest were
averaged. Timings were taken using a dual
processor 1.3 GHz Dell workstation.

4.1 Performance Analysis

In this section, we will study the performance
implications (i.e., the size of data sets transmitted
and execution time) of different distributions of
the private table and different privacy
requirements.

4.1.1 Effect of Private Table Distributions
To begin the execution time analysis, we study the effect of different private table
distributions on performance by varying the size of table R in relation to the size of the set of
possible key values U (|R|/|U|) and fixing the required relative privacy loss to not exceed
0.01. Figure 3 shows how execution time varies as |R|/|U| changes. Figure 4 shows how the
size of the transmitted sets |N| and |F| varies as |R|/|U| changes. For each of the
execution time tests, the transmission cost of transmitting a hash value was equivalent to

transmitting a 4-
byte integer, and
the cost of
transmitting a
tuple from S was
equivalent to
transmitting two
4-byte integers.
For a Gaussian
distribution and
genome data
distributions of
table S,

Fig. 4. Set sizes |N| and |F| for variable |R|/|U|. Target prel = 0.01 and ch/ct = ½

Fig. 5. Execution times for variable target prel. |R|/|U| =
0.1 and ch/ct = ½

execution time increases linearly as |R|/|U| increases as do the sizes of N and F. Thus, as
expected, the processing (i.e., transmission and computation time) of the two intermediate sets
dominate the execution time for these two data distributions.
For a uniform distribution of table S, the execution time behaves as a step function,
transitioning when |R|/|U| = 0.6. Figure 4 shows that |N| increases along with the
execution time curve; whereas, |F| remains relatively
constant. While initially surprising, as shown in Figure 8,
when |R|/|U| transitions from 0.6 to 0.7, the system
experiences the largest increase in hash size |H|,
resulting in far fewer collisions; and, consequently
many more hash values are sent to dw to meet the
privacy constraint. Because, the largest hash size
increase occurs at much lower |R|/|U| values
for the Gaussian and genome distributions, any
sharp increases in execution times are less apparent for
those distributions.
Comparing the behavior of the various
distributions, the execution time of the distributed
join operation is directly related to the size of tables R, N,
and F for the Gaussian data distribution and the genome data distribution. However, for a
uniform distribution, the execution time is generally independent of |R|/|U|, except when
there is a large transition in hash values used, because the transmission of noise and false-
positives dominate the cost. From this figure, it can also be seen that the execution times for
join operations operating over the genome data distribution are lower than for the Gaussian
distribution, which are usually lower than for the uniform distribution. Less uniform
distributions will usually result in better execution times because they are more biased and
thus will have less entropy. Uniform distributions have the most entropy of any distribution,
requiring either far more hash values or far more false positives to be returned by dw to satisfy
the privacy constraint.

4.1.2 Effect of
Privacy Requirements
In the second set
of execution
time analyses,
we will study
performance
implications of
different privacy
requirements by
fixing |R/|U| to
0.1 and by

varying the maximum privacy loss, or the target relative privacy loss prel, from 0.01 to 0.96, in
intervals of 0.05. Figure 5 shows how execution times vary as the target prel changes. Figure 6

Fig. 7. Varying absolute privacy. Target prel =
0.01 and ch/ct = ½

shows how |N| and |F| vary as the target prel changes in the second graph. Intuitively, as the
privacy constraint is relaxed, execution times for both the Gaussian and uniform data
distributions decrease since fewer hash values are needed to satisfy the privacy constraint. For
any join operation whose target prel is greater than 0.21, the execution times, |N|, and |F|

remain constant.
In such cases,
|h(R)| is large
enough to satisfy
the privacy
constraint
without any
noise. Thus, there
is very little
performance gain
by increasing the
target relative
privacy loss
greater than 21%

for private tables containing only 10% of the total possible keys.
Figure 5 also shows that the execution time of the genome data set remains relatively constant,
with minor variations in execution times due to the randomness of data items in set R and
consequently the high randomness of data items in set F. Furthermore, |N| remains constant
regardless of the target privacy; and consequently, only the varying sizes of table F contribute
to the variation in execution times, which is determined by the random selection of tuples in
table R. This is shown in the second graph of Figure 6. The variance in execution times is more
than that of the other distributions because the data in the genome data set is much less
uniformly distributed than the other two distributions.
In summary, when target prel is low, there is more variation in execution times for the Gaussian
and uniform distributions. When the privacy constraint is relaxed, there is little or no change
in execution times.

4.2 Absolute Privacy Loss Analysis

Figure 7 shows how absolute privacy loss varies as |R| changes and the target prel is fixed at 0.01. For the uniform distribution,
the absolute privacy loss is kept very low and close to the target prel of 0.01 since satisfying the relative privacy loss
constraint for a uniform distribution is almost identical to satisfying an absolute privacy constraint of the same magnitude.
However, for the Gaussian and genome data distributions, the absolute privacy loss differs greatly from the target relative prel,
because far less effort is required to satisfy the relative privacy loss constraint than that required to satisfy an absolute
privacy loss constraint of equal magnitude due to less uniformity in these distributions. For non-uniform distributions,
achieving low absolute privacy loss would be much more expensive than achieving low relative absolute privacy loss;
whereas, the cost for achieving both for a uniform distribution would be relatively the same.
Figure 7 also shows that as |R|/|U| increases, absolute privacy loss decreases. In general, as
|R|/|U| increases, the data revealed by db to dw increases. As a result, the pool of possible
values that an adversary can use to infer the actual values of column B in table R increases as
well, resulting in far greater uncertainty about the actual value of a column B value in table R.

 (a) (b)

Fig. 8. Varying normalized transmission costs with respect to the brute-force method. (a) Target
p = 0.01 and c /c = ½. (b) |R|/|U| = 0.1 and c /c = ½

4.3 Hash Selection Analysis

In this analysis, we determined the size of the selected hash function that yields the lowest transmission cost increases as
|R|/|U| increases, for all distributions. We experimented with hash sizes ranging from 8 to 16 bits because any larger hash
sizes, such as 17 bits would yield almost no collisions. It was found that as the uniformity of table S increases, a wider range of
hash values is required to account for any variations in sizes of table R provided by a user. Depending on the size of |R|/|U| ,
for the uniform distribution, hash sizes ranging from 10-bits to 16-bits are required. For the Gaussian distribution, hash sizes
ranging from 12-bits to 16-bits are required. Finally, for the genome data set, hash sizes ranging from 14-bits to 16-bits are
needed.

4.4 Transmission Cost Analysis

In this set of analyses, the transmission costs of the hash/noise method in relation to the brute-force are studied.
The observed normalized transmission cost based on equation 10 using the observed |F| is
compared to the estimated normalized transmission cost based on equation 11. The first graph
of Figure 8 shows that the hash/noise method works well when |R|/|U| is very low, and
especially well when the distribution of key values in table S is very biased. For uniform
distributions of table S and a target prel of 0.01, the transmission costs of the hash/noise
method was 90% or more of the transmission costs of the brute-force method, costing as much
as the brute-force method. For a Gaussian-distributed data set, the transmission costs ranged
from 35% to 95% of the brute-force method, depending on |R|/|U|. For the skewed genome
data set, the transmission cost also varied significantly depending on the size of |R|/|U|.
The second graph shows that the transmission cost steeply decreases as the target prel increases
from 0.01 to 0.2 for both Gaussian and uniform distributions. For any target prel greater than
0.2, transmission costs are 25% of that of the brute-force method, for all distributions. The
general behavior of steeply decreasing and flattening out was predicted by the estimated
normalized transmission cost curves, but the actual transmission costs were not accurately
estimated. For the less uniform genome data, the transmission costs remain relatively constant
with an average of 25% of that of the brute-force
method, for all target relative prel values and when
|R|/|U| is 0.1. Like for the other distributions, the
general behavior of the observed transmission cost
curve was predicted by the estimated transmission cost
curves, but the actual transmission costs were poorly
predicted.
Figure 9 compares the attained normalized
transmission cost of the hash/noise method with the
cost of simple semi-joins (i.e., no privacy
constraints enforced). The graph shows that
|R|/|U| is directly proportional to what the cost of
the semi-join would be. The graph summarizes how
much more the hash/noise method costs to satisfy a
maximum relative privacy loss of 0.01 in comparison to a
semi-join, which provides for no privacy. Using the
hash/noise method, it is very expensive to achieve a maximum relative privacy loss of 0.01
when the distribution of the column B values of the S table is uniform. In contrast, when the S

Fig. 9. Attained normalized transmission costs of
join with privacy constraints and join without
privacy constraints. Target prel = 0.01 and ch/ct =
½. Cost of transmitting the key of a record from
db is half the cost of transmitting a tuple from dw

table is non-uniform, there is much less additional cost for the added privacy that the
hash/noise method provides.

5. Conclusion and Future Work

A practical solution to the private date integration problem must maintain privacy while remaining efficient. Based on the
metric of relative information gain, we have presented an efficient approach to performing joins between a relatively small
database and a large, public data repository. By making use of predefined hash functions and noise injection to satisfy the
privacy constraints, traditional indexing mechanisms can be used. Thus the total cost of a distributed join is dominated by
transmission costs rather than by search and comp utational costs.
Based on our preliminary results, several future research directions can be pursued.
Our current cost estimation uses the average number of collisions to estimate the number of tuples to be returned by dw,
which works well for uniformly-distributed data but poorly for non-uniformly distributed data. In future work, additional
features such as the distribution of table S could be incorporated into the estimate. This work can also be expanded to infinite
domains (e.g., people’s names), specifically to develop a privacy loss metric relevant to these domains. Additionally, our
method only protects the privacy of data over a single query; and, it may be possible for adversaries to make inferences over
multiple queries. Perhaps, some caching can be used to avoid exposing the same private data set more than once. Finally, the
presented hash/noise technique only works for the equijoin operation. There may be a need to develop methods to protect the
privacy of data that are processed by general joins.
Our promising initial results show the merit of using hashing and noise injection to solve the
problem of efficiently integrating small amounts private data with large amounts of public
data. In comparison to other related approaches, the hash/noise technique does not assume
non-collusion, does not require downloading the entire data warehouse table, leverages
existing indexing mechanisms, and provides for finer-grain control of privacy than simple
hashing.

7. Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence
Livermore National Laboratory under contract no. W-7405-Eng-48. The authors would like to thank Tina Eliassi-Rad, David
Buttler, and Roderick Son for their valuable input.

References

1. S. Phillippi and J. Kohler, “Using XML Technology for the Ontology -Based Semantic Integration of Life Science Databases,” IEEE
Transactions on Information Technology in Biomedicine, vol. 8, no. 2, pp. 154-160, June 2004.

2. Tomasic, L. Raschid, and P. Valduriez, “Scaling Access to Heterogeneous Data Sources with DISCO,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 5, pp. 808-823, Sept/Oct 1998.

3. S.B. Davidson, et al, “Transforming and Integrating Biomedical Data using Kleisli: A Perspective,” ACM SIGBIO Newsletter, vol. 19,
no. 2, pp. 8-13, 1999.

4. Z. Lacroix, O. Boucelma, and M. Essid, “The Biological Integration System,” in Proceedings of WIDM ’03, pp. 45-49, New Orleans,
LA, Nov. 7-8, 2003.

5. M. Alvarez, et al, “FINDER: A Mediator System for Structured and Semi-Structured Data Integration,” in Proceedings of the 13th
International Workshop on Database and Expert Sy stems Applications (DEXA ’02), pp. 847, Aix-en-Provence, France, Sept. 2-6,
2002.

6. L.M. Haas, et al “DiscoveryLink: A System for Integrated Access to Life Sciences Data Sources,” IBM Systems Journal, vol. 40, no.
2, pp. 489-511, 2001.

7. B. Thuraisingham, “Data Mining, National Security, Privacy and Civil Liberties,” ACM Special Interest Group on Knowledge

Discovery in Data and Data Mining (SIGKDD) Explorations Newsletter, vol. 4, no. 2, pp. 1-5, June 2002.
8. M.S. Olivier, “Database Privacy: Balancing Confidentiality, Integrity and Availability,” ACM Special Interest Group on Knowledge

Discovery in Data and Data Mining (SIGKDD) Explorations Newsletter, vol. 4, no. 2, pp. 20-27, June 2002.
9. R. Agrawal et al, “ Hippocratic Databases,” in Proceedings of the 28th Very Large Databases (VLDB) Conference, Hong Kong, China,

2002.
10. T.D. Sterling and J.J. Weinkam, “Sharing Scientific Data,” Communications of the ACM, vol. 33, no. 8, pp. 113-119, Aug. 1990.
11. F. S. Collins, E. D. Green, A. E. Guttmacher, and M. S. Guyer, "A vision for the future of genomics research," Nature, vol. 422, no.

6934, pp. 835-847, 2003.
12. NCBI, "GenBank," [Online] Available: http://www.ncbi.nlm.nih.gov/Genbank/index.html, 2004.
13. P.A. Bernstein and D.W. Chiu, “Using Semi-Joins to Solve Relational Queries,” Journal of the ACM, vol. 28, no. 1, pp. 25-40, Jan.

1981.
14. P.L. Vora, “Towards a Theory of Variable Privacy,” in review, May 7, 2003.
15. G. Schadow, S.J. Grannis, and C.J. McDonald, “Privacy-Preserving Distributed Queries for a Clinical Case Research Network,” in

Proceedings of IEEE International Conference on Data Mining Workshop on Privacy, Security, and Data Mining, Maebashi City,
Japan, 2002.

16. D. Agrawal and C.C. Aggarwal, “On the Design and Quantification of Privacy Preserving Data Mining Algorithms,” in Proceedings of
Principles of Database Systems (PODS) 2001, pp. 247-255, Santa Barbara, CA, 2001.

17. C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining Privacy for Data Mining,” in Proceedings of the National Science Foundation
Workshop on Next Generation Data Mining, Nov. 1-3, 2002, Baltimore, MD.

18. C. Clifton, et al, “Privacy-Preserving Data Integration and Sharing,” in Proceedings of Data Mining and Knowledge Discovery
(DMKD) ’04, Paris, France, June 13, 2004.

19. J. Vaidya and C. Clifton, “Privacy Preserving Association Rule Mining in Vertically Partitioned Data,” in Proceedings of ACM Special
Interest Group on Knowledge Discovery in Data and Data Mining (SIGKDD) International Conference on Knowledge Discovery and
Data Mining (KDD ’02), Edmonton, Alberta, Canada, 2002.

20. S. Agrawal, V. Krishnan, and J. Haritsa, “On Addressing Efficiency Concerns in Privacy-Preserving Data Mining,” in Proceedings of
the International Conference on Database Systems for Advanced Applications (DAFSAA) 2004, pp. 113-114, Jeju Island, Korea,
Mar. 17-19, 2004.

21. W. Du and Z. Zhan, “Using Randomized Response Techniques for Privacy-Preserving Data Mining,” in Proceedings of ACM Special
Interest Group on Knowledge Discovery in Data and Data Mining (SIGKDD) International Conference on Knowledge Discovery and
Data Mining (KDD ’03), Aug. 24-27, 2003.

22. R. Agrawal and R. Srikant, “Privacy-Preserving Data Mining,” in Proceedings of the 2000 ACM International Conference on
Management
of Data, pp. 439-450, Dallas, TX, 2000.

23. B. Chor et al, “Private Information Retrieval,” Journal of the ACM, pp. 965-982, vol. 45, no. 6, Nov. 1998.
24. R. Agrawal, A. Evfimievski, and R. Srikant, “Information Sharing Across Private Databases,” in Proceedings of the Special Interest

Group on Management of Data (SIGMOD) 2003, pp. 86-97, San Diego, CA, June 9-12, 2003.
25. M. Kantarcioglu and C. Clifton, “Assuring Privacy when Big Brother is Watching,” in Proceedings of Data Mining and Knowledge

Discovery (DMKD) ’03, San Diego, CA, June 13, 2004.
26. C. Clifton, et al, “Tools for Privacy Preserving Distributed Data Mining, ACM Special Interest Group on Knowledge Discovery in

Data and Data Mining (SIGKDD) Explorations Newsletter, vol. 4, no 2, pp. 28-34, Dec. 2002.
27. M. Naor and B. Pinkas, “Efficient Oblivious Transfer Protocols,” in Proceedings of Society of Industrial and Applied Mathematics

(SIAM) Symposium on Discrete Algorithms, Washington, DC, Jan. 7-9, 2001.
28. M. Bellare and S. Micali, “Non-Interactive Oblivious Transfer and Applications,” in Proceedings on Advances in Cryptology , pp.

547-557, Santa Barbara, CA, 1989.
29. M.J. Freedman, K. Nissim, and B. Pinkas, “Efficient Private Matching and Set Intersection,” in Proceedings of Eurocrpyt 2004,

Interlaken, Switzerland, May 2-6, 2004.
30. Y. Gertner et al, “Protecting Data Privacy in Private Information Retrieval Schemes,” in Proceedings of the 13th Annual ACM

Symposium on Theory of Computing, pp. 151-160, Dallas, TX, 1998.
31. J.K. Mullin, “Optimal Semijoins for Distributed Database Systems,” IEEE Transactions on Software Engineering, vol. 16, no. 5, pp.

558-560, May 1990.
32. J.M. Morrissey and W.K. Osborn, “Distributed Query Optimization Using Reduction Filters,” in Proceedings of IEEE Canadian

Conference on Electrical and Computer Engineering, vol. 2, pp. 707-710, May 24-28 1998.
33. S. Bellovin and W. R. Cheswick, “Privacy-Enhanced Searches Using Encrypted Bloom Filters,” in Proceedings of DIMACS/Portia

Workshop on Privacy-Preserving Data Mining, Piscataway, NJ, Mar. 15-16, 2004.
34. C.E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July

and Oct. 1948.
35. MySQL AB, “MySQL: The World’s Most Popular Open Source Database,” Aug. 2004; http://dev.mysql.com/
36. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography , CRC Press, 1997, pp. 347.
37. UCSC Genome Bioinformatics, “UCSC Genome Browser Home,” Aug. 2004; http://genome.ucsc.edu/

